…a statisztika ugyanis konkrétan egy külön szakma. Pszichológusoktól, orvosoktól, vagy neveléstudományi szakemberektől nem elvárható, hogy a statisztikához is professzionális szinten értsenek – hiszen az egy másik tudományág! Sajnos azonban a gyakorlat azt mutatja, hogy sok felsőoktatási intézményben mégis ezt az irreális elvárást támasztják a hallgatókkal szemben, ha korábban nem, a szakdolgozat statisztikai részének összeállításánál biztosan.
Ráadásul a statisztikát a legtöbb helyen nem is tanítják igazán jól, amiből az következik, hogy gyakran érthetetlen, mi is az egésznek a lényege. Például hogy miért kell hipotézisvizsgálat ahhoz, hogy eldöntsük, két átlag között van -e eltérés, mikor szemmel látható, hogy van? Szintén ki szokott maradni a képletekben használt jelölések ismertetése; pedig gyakran a képletek egy egész feladaton végigvezetnek, és segítenek abban is, hogy a számolási lépéseken helyes sorrendben haladjunk végig…
Sőt, már régóta kutatóként dolgozó szakembereknek is lehetnek fehér foltok a tudásában; hiszen egy kutatás felépítése és kivitelezése, majd az eredmények értelmezése nagyon összetett feladat, és egyáltalán nem biztos, hogy az előzetes tanulmányai során megfelelő felkészítést kapott az ilyen jellegű kihívások kezelésére az illető.
Tapasztalt statisztika magántanárként (15 éve magyarázok szinte nap- mint nap szignifikanciáról, anováról, normál-eloszlásról, korrelációkról, konfidencia-intervallumokról lelkes, és kevésbé lelkes tanítványoknak) pontosan tudom, mi az, amit a legtöbb egyetemen és főiskolán teljesíteni kell statisztikából. Azt is tudom, hogy mi az, amire már egy kutatás nulladik pillanatában érdemes figyelni, és mik azok a döntési pontok, ahol félrecsúszhat egy kutatás. És, bár én imádom a statisztikát, azzal is tisztában vagyok, hogy nem mindenki van ezzel így. Bízom benne, hogy a te, statisztikával kapcsolatos problémáidon is tudok segíteni, így ha szeretnél órára jelentkezni, vagy kérdésed van, vedd fel velem a kapcsolatot!
Nemrég járta be a sajtót a hír, hogy Nagy-Britanniában néhány évtizede tévesen számolták ki, hogy egy szál cigaretta átlagosan hány évvel rövidíti meg egy ember életét. A történtekről szóló cikkekben „jelentős módszertani hibákat” említettek, én pedig arra gondoltam, ezekből talán érdemes tanulni.
Mind a régi, téves, mind a frissebb, kiigazító kutatás Nagy-Britanniában zajlott; ez azért különösen érdekes, mert Anglia volt az egyik, ha nem a legjelentősebb ország a dohányzás európai elterjedésének történetében. I. Jakab király, és a dohányt az angolokkal megismertető Sir Walter Raleigh annyira nem szívelhették egymást, hogy miután vitatkoztak egy sort arról, be kell -e tiltani, vagy meg kell-e adóztatni a dohányzást, I.Jakab lefejeztette a Sir-t. A képen még fejjel együtt látható, miközben látványos pipájából boldogan pöfékel (a háttérben pedig a szolgáló épp készül vízzel eloltani gazdáját, azt gondolván, hogy az azért füstöl, mert meggyulladt):
Egyszóval a szigetországnak és a dohányzásnak nagyon hosszú, közös története van; de ugyanez igaz a dohányzás káros hatásainak kutatására is. Sőt, brit tudósoktól származik az első olyan tanulmány, ami egészen komoly módszertannal, elsőként bizonyította be kétséget kizáróan, hogy a dohányzás tüdőrákot okoz. Ebben az 1950-es tanulmányban Doll és Hill szem előtt tartották például azt az irányelvet, hogy a kontroll-, és a hatásnak kitett csoportnak a hatáson kívül érdemes teljesen egyformának lennie, különben nem fogjuk tudni, mi okozza az eltérést a kimenetelben. Ez például egy fantasztikus táblázat arról, hogy hogyan alakultak az illesztett mintájuk számai (amikor is nem, életkori sáv, társadalmi osztály, és lakóhely szerint is igyekeztek a beteg és nem beteg mintát illeszteni, hogy valóban csak a betegség ténye különböztesse meg egyik csoportot a másiktól):
Ugyanakkor a 2000-es eredeti, a British Medical Journal-ban megjelent kutatásban kizárólag férfiak egészségét és dohányzási szokásait vetették össze; ezen belül kizárólag férfi orvosokét. Az akkori eredmény szerint egyetlen szál cigaretta elszívása 11 perccel rövidíti meg az életet – és a másik félmondat, amit akkoriban a média már nem jelentetett meg – hogy ez a kijelentés csak akkor igaz, ha az ember Nagy Britanniában él, férfi, és orvos.
Egy adott mintából mindig csak arra a populációra következtethetünk vissza, amiből a mintát vettük! Ha ezt nem tartjuk szem előtt, az úgynevezett lefedettségi hibát követjük el – mert nem látjuk a teljes populációt, mégis arra vonatkozóan teszünk becsléseket. A 2000-es kutatás eredményei csak a dohányzásnak a férfiakra gyakorolt hatásairól mondanak el valamit.
Az új kutatás egyébként a férfiakra vonatkozó számokat is korrigálta az újabb adatok alapján. Egyéb, potenciális összemosó változókra való kontrollálás után (társadalmi-gazdasági státusz, testmozgás) úgy becsülték, a férfiak életét átlagosan 17-; míg a nőkét 22 perccel rövidíti meg egyetlen szál cigaretta elszívása.
A „small sample bias” egy olyan gondolkodásbeli torzítás, amely során egy kis mintából általános érvényű következtetést vonunk le – például amikor ugyanabban a boltban velünk már másodszor undok az eladó, és ezért elhatározzuk, többé nem vásárolunk ott.
A kis mintanagyság (jelen esetben a 2 darab vásárlás) nagyon erősen kitett a szélsőséges értékeknek; míg egy nagyobb mintánál az extrém kicsi-, és az extrém nagy értékek nagyjából ki tudják egymást egyensúlyozni. Ez nem jelenti azt, hogy ha százszor térnénk be a boltba, akkor szükségszerűen azt tapasztalnánk, hogy ugyanannyiszor undok-, mint ahányszor kedves az eladó – ez csak akkor történne így, ha ő valójában egy kiegyensúlyozott személy lenne, és a hangulatai csak a véletlen hatására változnának. Száz vásárlás során azt is észrevehetnénk, hogy valóban jóval többször undok, mint kedves; de ez, a nagyobb elemszám miatt, már egy jobban általánosítható minta lenne, és ez esetben érdemes lenne tényleg elkerülni a boltot a továbbiakban. Az is előfordulhatna, hogy száz vásárlás után felülírnánk az első kettő során kialakított meggyőződésünket, mert az eladó jóval többször lenne kedves, mint nem. Két vásárlásból azonban azért nem érdemes általános következtetést levonni, mert a kétszer ismétlődő undokság könnyen lehet egyszerűen a véletlen műve – például hogy mindkét alkalommal szerencsétlen módon egy kivételesen hepciás vásárló került éppen elénk a sorban, és ettől az eladó is idegesebb lett. (Ez persze nem azt jelenti, hogy az egyik vásárló által keltett belső feszültséget rendben van a következőn leverni, de ez sajnos elég gyakran megtörténik – itt találsz néhány taktikát, hogy kezeld a hasonló helyzeteket.)
Ugyanígy ha például kedved támadna kaparós sorsjegyekkel próbára tenni a szerencsédet, nem érdemes néhány, kezdetben kiválasztott, nyerő sorsjegy után általánosítani. Abból, hogy mondjuk az első 10 sorsjegyből 8 nyert, egyáltalán nem következik, hogy ha 100 darabot veszel, 80 nyertes szelvénnyel alapozhatod meg a jövőbeli anyagi biztonságodat – mert az első 10 alapján nem lehet az összesre következtetni! (És persze az sem mindegy, a nyertesekkel mennyi pénzt nyernél…) Sőt, egy 2019-es statisztika alapján tudható, hogy ezekkel a sorsjegyekkel hosszú távon a befektetett pénz nagyjából 62-65%-át nyerjük csak vissza – azaz a pénzünk egyharmadát elveszítjük!
Mint az összes gondolkodásbeli torzításnak, a fent vázoltnak is az ember működésébe mélyen beágyazott gyökerei vannak – nyilván alapjában véve lineárisan gondolkodunk; ez az alapállás pedig igencsak kedvez a kis mintákból való téves következtetések levonásának… (És természetesen egy nagy minta sem garantál biztos alapot az általánosításhoz – ahhoz a mintának minőségbeli követelményeknek is meg kell felelnie, nem csak a mennyiség kell, hogy stimmeljen.) Mindenesetre érdemes tudatában lenni annak, hogy kevésszámú tapasztalat alapján nem érdemes hosszútávú következtetéseket levonni!
A változóredukció témakörénél gyakran felmerül a kérdés, hogy vajon mi a különbség a főkomponens-képzés, illetve a faktorképzés között. Valóban, a két eljárás eredményében lehet nagyon hasonló – ezt szemlélteti a következő táblázat, amit a World Values Study 7.hullámának adataiból készítettem; a következő változószett kérdéseivel (mennyire tartja elfogadhatónak az alábbiakat a válaszadó):
Justifiable: Avoiding a fare on public transport Justifiable: Stealing property Justifiable: Cheating on taxes Justifiable: Someone accepting a bribe in the course of their duties Justifiable: Homosexuality Justifiable: Prostitution Justifiable: Abortion Justifiable: Divorce Justifiable: Sex before marriage Justifiable: Suicide Justifiable: Euthanasia Justifiable: Violence against other people Justifiable: Terrorism as a political, ideological or religious mean
Látható, hogy a 13 változó ugyanúgy rendeződött 3 csoportba mindkét eljárás esetén; a különbség csupán a töltésekben van – erre még visszatérünk. Matematikailag is szinte ugyanaz a folyamat zajlik a két módszer alkalmazása során; és bizonyos szempontból a céljuk is ugyanaz, sok változóból kevesebbet csinálni – vagyis adatredukciót végezni.
Szokás úgy fogalmazni, hogy a faktorelemzés során úgynevezett látens tényezőket keresünk, vagyis a változók mögötti, rejtett magyarázó változókat; míg a főkomponens elemzésnél egyszerűen csoportosítjuk az adatokat; tehát a változók csoportokba rendezésének az iránya más, ezt szemlélteti az alábbi ábra. Először azt érdemes megfigyelni, hogy a faktorelemzésnél a változók felé mutatnak a nyilacskák (jelezve ezzel, hogy egy látens, mögöttes hatótényező a rendezőelv), míg a főkomponenses ábrán a nyilacskák a változókból indulnak ki (jelezve, hogy itt a változók összevonása mögött itt nincs rejtett hatótényező):
Ez az eltérés az irányokban jól értelmezhető, ha végiggondoljuk, hogy elemzőként két célunk is lehet egy ilyen változószettel. Egyrészt törekedhetünk arra, hogy valóban csak az adatredukciót szem előtt tartva kevesebb változóba sűrítsünk minél több információt (ebből lesznek a főkomponensek). Ugyanakkor próbálkozhatunk azzal is, hogy felderítsük, milyen gondolati sémákkal, vagy attitűdökkel rendelkeznek a válaszadóink; tehát a rejtett szerkezetet szeretnénk feltárni. Ez a rejtett szerkezet az adatainkban úgy fog megmutatkozni, hogy azokra a kérdésekre, amik hasonló gondolatokat, érzéseket váltanak ki a válaszadókból, egymáshoz hasonlóbb válaszértékeket adnak. Amögött tehát, hogy az első faktorhoz a tömegközlekedésen lógás, a lopás, a kenőpénz és az adócsalás tartoznak; de a többi változó másik faktorokon van, az a jelenség húzódik meg, hogy ez a négy dolog az emberek fejében egy kategória, és ez megmutatkozik abban, hogy ezek az adatok egymással jobban egybecsengnek, mint a többi kérdésre adott válaszokkal.
És éppen ez a döntő különbség a két eljárás között: faktorelemzésnél csak a közös hatótényezők érdekelnek minket, semmi más; míg a főkomponens elemzésnél minden egyéb hatás is. Ilyen módon a faktorelemzésnél egészen fontos hatásokat is figyelmen kívül hagyhatunk; ha azok nem közösek más változókra ható tényezőkkel, akkor a mi elemzésünkben csak hibának értékelődnek, így ha még egyszer rápillantunk az előző ábrára, érdemes azt is megfigyelni, hogy csak a faktoros ábrán láthatunk hibatagokat (e betűvel, mint error) jelölve.
És íme, az az ábra, ami szintén jól szemlélteti, hogy a változókban megmutatkozó, többféle varianciából a jobb oldali, faktoros ábrán a látens változó csak a közös résszel kapcsolódik össze; míg a főkomponens elemzésnél többféle variancia is bekerül a főkomponensbe:
Térjünk vissza még a főkomponens- és faktortöltések táblázatát (kiegészítve azzal, hogy a töltések az adott faktor vagy főkomponens és a változó korrelációját mutatják). Ha figyelembe vesszük, hogy a faktorok csak a közös varianciát jelenítik meg, míg a főkomponensek minden varianciát, érthető, hogy az előbbiek értéke kisebb, mint az utóbbiaké:
Összefoglalva a rövid válasz arra, hogy melyik eljárást mikor használjuk az, hogy ha érdekel minket, milyen rejtett hatótényezők működnek egy-egy változószettben, használjuk a faktorelemzést – ebben az esetben csak a mögöttes faktorok által megmagyarázott varianciát őrizzük meg a változóredukció során.Viszont ha egyszerűen csak minél hatékonyabban akarjuk kevés változóban összevonni az eredeti változóinkat, és belőlük minél több információt megőrizni, dolgozzunk főkomponens-elemzéssel.
Erre egy rövid szemléltetés; a legalsó sorban nyilvánvalóan van összefüggés a két változó között (mivel az adatpontok egyértelműen mintázatba rendeződnek); azonban mivel az összefüggés nem lineáris, a lineáris korrelációs együttható nem képes kimutatni:
Így aztán a használata előtt mindenképpen érdemes ellenőrizni, hogy a kapcsolat lineáris -e. Ahhoz, hogy lineárisnak mondhassuk, nem szükséges egyértelműen egy egyenesre rendeződniük az adatpontoknak; a képen látható, legfelső sorbeli mintázatok mind megfelelnek a feltételnek!