oktatás, elemzés, kutatástervezés

Szerző: BartekMaria

Főkomponens vagy faktor legyen? – az egyik leggyakoribb kérdés a statisztikában

A változóredukció témakörénél gyakran felmerül a kérdés, hogy vajon mi a különbség a főkomponens-képzés, illetve a faktorképzés között. Valóban, a két eljárás eredményében lehet nagyon hasonló – ezt szemlélteti a következő táblázat, amit a World Values Study 7.hullámának adataiból készítettem; a következő változószett kérdéseivel (mennyire tartja elfogadhatónak az alábbiakat a válaszadó):

Justifiable: Avoiding a fare on public transport
Justifiable: Stealing property
Justifiable: Cheating on taxes
Justifiable: Someone accepting a bribe in the course of their duties
Justifiable: Homosexuality
Justifiable: Prostitution
Justifiable: Abortion
Justifiable: Divorce
Justifiable: Sex before marriage
Justifiable: Suicide
Justifiable: Euthanasia
Justifiable: Violence against other people
Justifiable: Terrorism as a political, ideological or religious mean

Látható, hogy a 13 változó ugyanúgy rendeződött 3 csoportba mindkét eljárás esetén; a különbség csupán a töltésekben van – erre még visszatérünk. Matematikailag is szinte ugyanaz a folyamat zajlik a két módszer alkalmazása során; és bizonyos szempontból a céljuk is ugyanaz, sok változóból kevesebbet csinálni – vagyis adatredukciót végezni.

Szokás úgy fogalmazni, hogy a faktorelemzés során úgynevezett látens tényezőket keresünk, vagyis a változók mögötti, rejtett magyarázó változókat; míg a főkomponens elemzésnél egyszerűen csoportosítjuk az adatokat; tehát a változók csoportokba rendezésének az iránya más, ezt szemlélteti az alábbi ábra. Először azt érdemes megfigyelni, hogy a faktorelemzésnél a változók felé mutatnak a nyilacskák (jelezve ezzel, hogy egy látens, mögöttes hatótényező a rendezőelv), míg a főkomponenses ábrán a nyilacskák a változókból indulnak ki (jelezve, hogy itt a változók összevonása mögött itt nincs rejtett hatótényező):

Ez az eltérés az irányokban jól értelmezhető, ha végiggondoljuk, hogy elemzőként két célunk is lehet egy ilyen változószettel. Egyrészt törekedhetünk arra, hogy valóban csak az adatredukciót szem előtt tartva kevesebb változóba sűrítsünk minél több információt (ebből lesznek a főkomponensek). Ugyanakkor próbálkozhatunk azzal is, hogy felderítsük, milyen gondolati sémákkal, vagy attitűdökkel rendelkeznek a válaszadóink; tehát a rejtett szerkezetet szeretnénk feltárni. Ez a rejtett szerkezet az adatainkban úgy fog megmutatkozni, hogy azokra a kérdésekre, amik hasonló gondolatokat, érzéseket váltanak ki a válaszadókból, egymáshoz hasonlóbb válaszértékeket adnak. Amögött tehát, hogy az első faktorhoz a tömegközlekedésen lógás, a lopás, a kenőpénz és az adócsalás tartoznak; de a többi változó másik faktorokon van, az a jelenség húzódik meg, hogy ez a négy dolog az emberek fejében egy kategória, és ez megmutatkozik abban, hogy ezek az adatok egymással jobban egybecsengnek, mint a többi kérdésre adott válaszokkal.

És éppen ez a döntő különbség a két eljárás között: faktorelemzésnél csak a közös hatótényezők érdekelnek minket, semmi más; míg a főkomponens elemzésnél minden egyéb hatás is. Ilyen módon a faktorelemzésnél egészen fontos hatásokat is figyelmen kívül hagyhatunk; ha azok nem közösek más változókra ható tényezőkkel, akkor a mi elemzésünkben csak hibának értékelődnek, így ha még egyszer rápillantunk az előző ábrára, érdemes azt is megfigyelni, hogy csak a faktoros ábrán láthatunk hibatagokat (e betűvel, mint error) jelölve.

És íme, az az ábra, ami szintén jól szemlélteti, hogy a változókban megmutatkozó, többféle varianciából a jobb oldali, faktoros ábrán a látens változó csak a közös résszel kapcsolódik össze; míg a főkomponens elemzésnél többféle variancia is bekerül a főkomponensbe:

Térjünk vissza még a főkomponens- és faktortöltések táblázatát (kiegészítve azzal, hogy a töltések az adott faktor vagy főkomponens és a változó korrelációját mutatják). Ha figyelembe vesszük, hogy a faktorok csak a közös varianciát jelenítik meg, míg a főkomponensek minden varianciát, érthető, hogy az előbbiek értéke kisebb, mint az utóbbiaké:

Összefoglalva a rövid válasz arra, hogy melyik eljárást mikor használjuk az, hogy ha érdekel minket, milyen rejtett hatótényezők működnek egy-egy változószettben, használjuk a faktorelemzést – ebben az esetben csak a mögöttes faktorok által megmagyarázott varianciát őrizzük meg a változóredukció során.Viszont ha egyszerűen csak minél hatékonyabban akarjuk kevés változóban összevonni az eredeti változóinkat, és belőlük minél több információt megőrizni, dolgozzunk főkomponens-elemzéssel.

Pontbecslés vs. intervallumbecslés – hogy mondjunk általánosságban valamit arról, meddig élnek a háziállatok?

Alig néhány perccel azután, hogy a facebook-oldalamon megosztottam ezt a grafikont, két kérdést is kaptam hozzá kapcsolódóan. A kettő közül az, amelyikre röviden tudtam válaszolni, így hangzott, idézem: „milyen állat a corn?” (megfejtés: kígyó).

A másik viszont hosszasabb kifejtést igényel, nevezetesen hogy miért nem konkrét átlagértékeket látunk a grafikonon; vajon miért van minden állat mellett egy szakasz?

Lépjünk néhányat vissza, és nézzük meg, hogyan lehet a kérdésre válaszolni: átlagosan meddig él egy házimacska? Nyilván adatokat kell gyűjtenünk konkrét macskák élettartamáról (hogy ezt hogyan, mikor, milyen feltételekkel érdemes csinálni, most ne firtassuk); a képzeletbeli kutatásunkban ugorjunk oda, amikor van egy, mondjuk 100 adatot tartalmazó adatbázisunk macskák életéveinek számával.

Az első lépés nyilván az lesz, hogy átlagot számolunk a 100 értékből; legyen mondjuk ez 13,5 év. Ez a szám azonban csak a 100, a mintánkban szereplő cicáról mond el valamit – minket viszont általánosságban érdekelne, meddig élnek a macskák.

Ha a mintából az összes cica élettartamára következtetünk, akkor statisztikai terminológiával élve becslést végzünk. Ehhez kell némi bátorság előzetes tudás, de ha nagyon egyszerűen gondolkodunk, mondhatjuk, hogy mivel a minta átlaga 13,5; az összes cica, akire a becslés vonatkozik, átlagosan 13,5 évet fog élni. Sőt, csak egy átlag birtokában ennél sokkal jobb értéket nem is tudunk kijelölni az összes cica életkorára; hiszen indokolatlan lenne mondjuk 13, vagy 16 évet mondani, ha egyszer a minta átlaga 13,5 lett.

Viszont, hála a valószínűségszámítás és a matematikai statisztika csodálatos módszertanának, ennél azért tovább is tudunk menni. Számszerűsíteni lehet ugyanis azt, hogy bizonyos keretek között mekkora hibára lehet számítani amiatt, hogy egy mintából következtetünk egy sokkal nagyobb elemszámú, vagy éppen végtelen elemszámú sokaságra (más szóval populációra). Ezt a kalkulált hibát (tegyük fel, ez 1,5 év a példánkban) pedig arra tudjuk használni, hogy a 13,5 átlagot korrigáljuk vele. Ha kivonjuk az átlagból a hibát, majd hozzá is adjuk, egy olyan intervallumot kapunk, amiben minden cica átlagos életkora (egy bizonyos, előre meghatározott megbízhatósággal) benne van; nem pedig csak azé a százé, aki a mintába került. Egészen konkrétan ebben a példában a cicák átlagos élettartamának pontbecslése 13,5 év; intervallumbecslése pedig a 12 és 15 év közötti intervallum, jelöléssel: [12;15] – és, visszatérve a kiinduló kérdésünkre, ezt látjuk tól-ig a grafikonon.

Ha tudok a vizsgára készülésben, beadandók elkészítésében, a kutatásod megtervezésében, vagy elemzésben segíteni, vedd fel velem a kapcsolatot!

(A képen szeretett Katie cicánk, aki sajnos csak 14 évet élt.)

Small sample bias/fallacy – avagy a statisztika szerint sorsjegykaparásból aligha leszünk milliomosok

A „small sample bias” egy olyan gondolkodásbeli torzítás, amely során egy kis mintából általános érvényű következtetést vonunk le – például amikor ugyanabban a boltban velünk már másodszor undok az eladó, és ezért elhatározzuk, többé nem vásárolunk ott.

A kis mintanagyság (jelen esetben a 2 darab vásárlás) nagyon erősen kitett a szélsőséges értékeknek; míg egy nagyobb mintánál az extrém kicsi-, és az extrém nagy értékek nagyjából ki tudják egymást egyensúlyozni. Ez nem jelenti azt, hogy ha százszor térnénk be a boltba, akkor szükségszerűen azt tapasztalnánk, hogy ugyanannyiszor undok-, mint ahányszor kedves az eladó – ez csak akkor történne így, ha ő valójában egy kiegyensúlyozott személy lenne, és a hangulatai csak a véletlen hatására változnának. Száz vásárlás során azt is észrevehetnénk, hogy valóban jóval többször undok, mint kedves; de ez, a nagyobb elemszám miatt, már egy jobban általánosítható minta lenne, és ez esetben érdemes lenne tényleg elkerülni a boltot a továbbiakban. Az is előfordulhatna, hogy száz vásárlás után felülírnánk az első kettő során kialakított meggyőződésünket, mert az eladó jóval többször lenne kedves, mint nem. Két vásárlásból azonban azért nem érdemes általános következtetést levonni, mert a kétszer ismétlődő undokság könnyen lehet egyszerűen a véletlen műve – például hogy mindkét alkalommal szerencsétlen módon egy kivételesen hepciás vásárló került éppen elénk a sorban, és ettől az eladó is idegesebb lett. (Ez persze nem azt jelenti, hogy az egyik vásárló által keltett belső feszültséget rendben van a következőn leverni, de ez sajnos elég gyakran megtörténik – itt találsz néhány taktikát, hogy kezeld a hasonló helyzeteket.)

Ugyanígy ha például kedved támadna kaparós sorsjegyekkel próbára tenni a szerencsédet, nem érdemes néhány, kezdetben kiválasztott, nyerő sorsjegy után általánosítani. Abból, hogy mondjuk az első 10 sorsjegyből 8 nyert, egyáltalán nem következik, hogy ha 100 darabot veszel, 80 nyertes szelvénnyel alapozhatod meg a jövőbeli anyagi biztonságodat – mert az első 10 alapján nem lehet az összesre következtetni! (És persze az sem mindegy, a nyertesekkel mennyi pénzt nyernél…) Sőt, egy 2019-es statisztika alapján tudható, hogy ezekkel a sorsjegyekkel hosszú távon a befektetett pénz nagyjából 62-65%-át nyerjük csak vissza – azaz a pénzünk egyharmadát elveszítjük!

Mint az összes gondolkodásbeli torzításnak, a fent vázoltnak is az ember működésébe mélyen beágyazott gyökerei vannak – nyilván alapjában véve lineárisan gondolkodunk; ez az alapállás pedig igencsak kedvez a kis mintákból való téves következtetések levonásának… (És természetesen egy nagy minta sem garantál biztos alapot az általánosításhoz – ahhoz a mintának minőségbeli követelményeknek is meg kell felelnie, nem csak a mennyiség kell, hogy stimmeljen.) Mindenesetre érdemes tudatában lenni annak, hogy kevésszámú tapasztalat alapján nem érdemes hosszútávú következtetéseket levonni!

A kapcsolódások szépek!

Most került elő a gépemről ez a pár évvel ezelőtti adatvizualizáció, amit egy workshop keretében készítettem. A workshop Barabási Albert László művészekkel foglalkozó projektjének része volt; a cél a magyar képzőművészek kapcsolatainak hálózatban való megjelenítése volt. Az ábrán egy konkrét képzőművésznő, és a vele valaha is együtt dolgozó művészek kapcsolódásai láthatóak; természetesen ez csak egy kis része lett a teljes képnek; a workshopon minden résztvevő egy képzőművész kapcsolati hálóját készítette el, és később ezek összekötéséből jött létre a kiállított mű. Izgalmas, és szép projekt volt.

Logisztikus regresszió a gyakorlatban

A logisztikus regresszió módszere nem mindig kerül bele a statisztika alap-, vagy mesterképzés tananyagába, pedig nem bonyolult, viszont nagyon hasznos akkor, amikor a vizsgálni kívánt változó kategoriális.

Ebben a tanulmányban arra használtuk, hogy párok fogyasztásának egyenlőtlenségeit vizsgáljuk

Mi a lényegük a hipotézisvizsgálatoknak? 1.rész

Tapasztalataim szerint ez az egyik leginkább misztikusnak tűnő fogalom a statisztikában – és nem csak a diákok számára. Találkoztam már olyan kutatóval is, aki, bár évtizedek óta a pályán van, mégsem érti a lényegét, pedig nem is annyira bonyolult – csak valami furcsa okból épp ez (mármint hogy mi a célunk vele, mi az értelme) szokott kimaradni a statisztika bevezető órákról. Úgyhogy akkor most tisztázzuk is!

Amit mindenképpen érdemes megérteni: a hipotézisvizsgálat mindig a POPULÁCIÓRÓL mond el valamit, a MINTA alapján. Ezért képezik a hipotézisvizsgálatok a következtető statisztika egy jelentős szeletét; a koncepció nyilván mindenkinek ismerős. Van egy sokaság, egy populáció, amit meg szeretnénk ismerni, de nincs módunk megkérdezni/megvizsgálni/lemérni ennek a populációnak minden elemét – kiválasztjuk tehát egy részét(veszünk belőle egy mintát); és ha ezt a kiválasztást sikerült elég precízen megvalósítanunk, akkor a mintából tudunk a teljes populációra következtetni. Ha pedig van egy előzetes feltevésünk a POPULÁCIÓRÓL (például hogy benne azonos a férfiak és a nők átlagmagassága), akkor ezt a feltevést a mintából való következtetéssel tudjuk ellenőrizni – vagyis hipotézisvizsgálatot végzünk.

Emlékszem, amikor én tanultam először erről, én sem értettem a dolgot. Oké, van egy női átlagunk (mondjuk 167), meg egy férfi átlagunk (mondjuk 175), ezeket könnyen kiszámolhatjuk a mintából. Akkor vajon, gondoltam én, miért teszi fel a tanár a szemmel láthatólag szerinte fontos kérdést: „És akkor nézzük meg, eltér -e a nők és a férfiak magassága?”- hát persze hogy eltér, könyörgöm, az egyik 167, a másik 175, a vak is látja, hogy eltér…Azt hiszem, a tanárok már azzal nagyban segítenék a téma megértését, ha ilyenkor kiegészítenék a mondatot, valahogy így: És akkor nézzük meg, eltér -e a nők és a férfiak magassága a POPULÁCIÓBAN (a mintából következtetve…).

Ebből persze az is kiviláglik, hogy ha nem mintavétellel dolgozunk, vagyis ha megvan minden adatunk a populáció elemeiről (mint például egy cégnél az össze munkatárs fizetése), akkor ott értelmetlen hipotézisvizsgálatokat végezni, hiszen nem kell következtetnünk semmire, csak számolnunk kell.

Illetve még egy lényeges kiegészítés: a hipotézisvizsgálatok valószínűségekkel dolgoznak, következésképp BIZTOSAT semmiről a világon nem tudnak mondani – sem pro, sem kontra.

A lényeg tehát, első körben: hipotézisvizsgálatot akkor használunk, ha egy, a populációra vonatkozó feltevésünket akarjuk egy minta alapján igazolni. Ha nincs mintavétel, nincs értelme a hipónak sem; továbbá éppen mivel ismeretlen populációs jelenségekre következtetünk, biztosat a populációról sosem tudunk állítani; nagyon valószínűt vagy valószínűtlent azonban igen.

A lényeg második része hamarosan következik, egy újabb bejegyzésben!

Mi a lényegük a hipotézisvizsgálatoknak? 2.rész

Az előző bejegyzésben tisztáztuk, hogy a hipotézisvizsgálatokat arra használjuk, hogy egy mintából a populációra következtessünk. Ennek a folyamatnak a során tulajdonképpen azzal próbálkozunk, hogy a véletlen hatását (ami a mintavételi ingadozáson keresztül valósul meg) a valós hatástól elkülönítsük; mindezt pedig valószínűségi alapon tesszük.

Folytassuk az előző posztban szereplő példával: eltér -e vajon a férfiak testmagassága a nőkétől a populációban? Mivel nem tudunk minden egyes embert megmérni, a populáció minden tagjának adatát képtelenség megismerni; ezért kénytelenek vagyunk egy mintából való következtetéssel beérni – ebben a mintában a nők magasságának átlaga 167 cm, a férfiaké 175. És, akármennyire precízen vettük is a mintát, abban megegyezhetünk, hogy egy másik minta egy kissé más átlagokat mutatna, egy harmadik pedig ismét eltérne kissé, a véletlen hatása miatt. Ha pedig ezt elfogadjuk, akkor honnan tudhatnánk, hogy a 167 és a 175 közötti eltérés nem csak egy extrém szerencsétlen mintavétel miatt van, hanem tényleges különbséget jelez?

Itt jön képbe a valószínűség. Mivel a nullhipotézis mindig az, amit leginkább „nincs itt semmi látnivaló”-nak nevezhetnénk (vagyis a példánkban, hogy nincs eltérés az átlagok között, tehát a populációban a férfiak és a nők testmagassága megegyezik), ebből az alapfeltevésből indulunk ki. Amikor a szignifikianciaszintet 0,05-ben határozzuk meg, akkor tulajdonképpen azt mondjuk, hogy a nullhipotézisben foglalt állításhoz képest leginkább valószínűtlen, lehetséges mintákat gondoljuk túl valószínűtlennek ahhoz, hogy a nullhipotézis fennállását még komolyan tudjuk venni (a lehetséges minták legextrémebb 5%-át). Egy határ után az eltérés a két átlag között már annyira valószínűtlen, hogy szinte képtelenül szerencsétlen mintát kéne vennünk hozzá, hogy az eltérés csak a véletlen műve legyen – márpedig ha nem a véletlen műve, akkor ott HATÁST találtunk (különbséget, összefüggést).

Ha a két nem testmagassága a nullhipotézisnek megfelelően tényleg egyezik, akkor például egy 168 versus 170-es nő/férfi mintaátlag még elképzelhető, mint a mintavételi ingadozás következménye. 168 és 172 cm is, „szemmértékre”. De ha a nő minta átlaga 168, a férfié 190, akkor érzékelhetően növekszik annak a valószínűsége, hogy mégsem stimmel a nullhipotézisünk. Ha az egyik átlag 140, a másik pedig 210 lenne (persze korrekt mintavétellel), akkor már nagyon nehéz lenne azt hinnünk, hogy a populációban egyforma magasak a férfiak és a nők, csak nagyon nem volt szerencsénk a mintavétellel.

Egy másik példa: hatásos -e egy antidepresszáns? Tegyük fel, ha a gyógyszert nem szedők PHQ-9 depresszióskálán mért értéke 9, a gyógyszert szedőké pedig 10: ez olyan csekély eltérés, hogy nem állíthatjuk meggyőződéssel, hogy valóban hat a gyógyszer. Lehet, hogy a véletlen szeszélye folytán a gyógyszert nem szedők csoportjába kevésbé depressziós emberek kerültek. Ha ugyanezek az értékek a 0-27-ig terjedő skálán 9 és 14, elgondolkodhatunk; viszont ha 9 és 18, akkor elég világos, hogy az antidepresszáns hat. Hogy valóban ez -e a helyzet a populációban, azt persze nem „érzésre” döntjük el, hanem hipotézisvizsgálattal.

Összefoglalva: az összes hipotézisvizsgálat ezzel a módszertannal dolgozik – vagyis a véletlen, és a tényleges hatás szerepét igyekszik tisztázni; és ehhez a valószínűségszámítás alapvetéseit használja. A jó hír, hogy ha valaki „csak” alkalmazni szeretné ezeket a módszereket, ennél mélyebben nem is szükséges alámerülni a hipotézisvizsgálatok csodás világába.

APA formátumú táblázat, közvetlenül SPSS-ből

Tanulmányokhoz, beadandókhoz, szakdolgozathoz hasznos lehet!

ANOVA futtatása és értelmezése excelben

2 / 2 oldal

Köszönjük WordPress & A sablon szerzője: Anders Norén