statpirin.hu - fájdalommentes statisztika

oktatás, elemzés, kutatástervezés

Főkomponens vagy faktor legyen? – az egyik leggyakoribb kérdés a statisztikában

A változóredukció témakörénél gyakran felmerül a kérdés, hogy vajon mi a különbség a főkomponens-képzés, illetve a faktorképzés között. Valóban, a két eljárás eredményében lehet nagyon hasonló – ezt szemlélteti a következő táblázat, amit a World Values Study 7.hullámának adataiból készítettem; a következő változószett kérdéseivel (mennyire tartja elfogadhatónak az alábbiakat a válaszadó):

Justifiable: Avoiding a fare on public transport
Justifiable: Stealing property
Justifiable: Cheating on taxes
Justifiable: Someone accepting a bribe in the course of their duties
Justifiable: Homosexuality
Justifiable: Prostitution
Justifiable: Abortion
Justifiable: Divorce
Justifiable: Sex before marriage
Justifiable: Suicide
Justifiable: Euthanasia
Justifiable: Violence against other people
Justifiable: Terrorism as a political, ideological or religious mean

Látható, hogy a 13 változó ugyanúgy rendeződött 3 csoportba mindkét eljárás esetén; a különbség csupán a töltésekben van – erre még visszatérünk. Matematikailag is szinte ugyanaz a folyamat zajlik a két módszer alkalmazása során; és bizonyos szempontból a céljuk is ugyanaz, sok változóból kevesebbet csinálni – vagyis adatredukciót végezni.

Szokás úgy fogalmazni, hogy a faktorelemzés során úgynevezett látens tényezőket keresünk, vagyis a változók mögötti, rejtett magyarázó változókat; míg a főkomponens elemzésnél egyszerűen csoportosítjuk az adatokat; tehát a változók csoportokba rendezésének az iránya más, ezt szemlélteti az alábbi ábra. Először azt érdemes megfigyelni, hogy a faktorelemzésnél a változók felé mutatnak a nyilacskák (jelezve ezzel, hogy egy látens, mögöttes hatótényező a rendezőelv), míg a főkomponenses ábrán a nyilacskák a változókból indulnak ki (jelezve, hogy itt a változók összevonása mögött itt nincs rejtett hatótényező):

Ez az eltérés az irányokban jól értelmezhető, ha végiggondoljuk, hogy elemzőként két célunk is lehet egy ilyen változószettel. Egyrészt törekedhetünk arra, hogy valóban csak az adatredukciót szem előtt tartva kevesebb változóba sűrítsünk minél több információt (ebből lesznek a főkomponensek). Ugyanakkor próbálkozhatunk azzal is, hogy felderítsük, milyen gondolati sémákkal, vagy attitűdökkel rendelkeznek a válaszadóink; tehát a rejtett szerkezetet szeretnénk feltárni. Ez a rejtett szerkezet az adatainkban úgy fog megmutatkozni, hogy azokra a kérdésekre, amik hasonló gondolatokat, érzéseket váltanak ki a válaszadókból, egymáshoz hasonlóbb válaszértékeket adnak. Amögött tehát, hogy az első faktorhoz a tömegközlekedésen lógás, a lopás, a kenőpénz és az adócsalás tartoznak; de a többi változó másik faktorokon van, az a jelenség húzódik meg, hogy ez a négy dolog az emberek fejében egy kategória, és ez megmutatkozik abban, hogy ezek az adatok egymással jobban egybecsengnek, mint a többi kérdésre adott válaszokkal.

És éppen ez a döntő különbség a két eljárás között: faktorelemzésnél csak a közös hatótényezők érdekelnek minket, semmi más; míg a főkomponens elemzésnél minden egyéb hatás is. Ilyen módon a faktorelemzésnél egészen fontos hatásokat is figyelmen kívül hagyhatunk; ha azok nem közösek más változókra ható tényezőkkel, akkor a mi elemzésünkben csak hibának értékelődnek, így ha még egyszer rápillantunk az előző ábrára, érdemes azt is megfigyelni, hogy csak a faktoros ábrán láthatunk hibatagokat (e betűvel, mint error) jelölve.

És íme, az az ábra, ami szintén jól szemlélteti, hogy a változókban megmutatkozó, többféle varianciából a jobb oldali, faktoros ábrán a látens változó csak a közös résszel kapcsolódik össze; míg a főkomponens elemzésnél többféle variancia is bekerül a főkomponensbe:

Térjünk vissza még a főkomponens- és faktortöltések táblázatát (kiegészítve azzal, hogy a töltések az adott faktor vagy főkomponens és a változó korrelációját mutatják). Ha figyelembe vesszük, hogy a faktorok csak a közös varianciát jelenítik meg, míg a főkomponensek minden varianciát, érthető, hogy az előbbiek értéke kisebb, mint az utóbbiaké:

Összefoglalva a rövid válasz arra, hogy melyik eljárást mikor használjuk az, hogy ha érdekel minket, milyen rejtett hatótényezők működnek egy-egy változószettben, használjuk a faktorelemzést – ebben az esetben csak a mögöttes faktorok által megmagyarázott varianciát őrizzük meg a változóredukció során.Viszont ha egyszerűen csak minél hatékonyabban akarjuk kevés változóban összevonni az eredeti változóinkat, és belőlük minél több információt megőrizni, dolgozzunk főkomponens-elemzéssel.

Regressziós egyenes egyenletének kiíratása az excelben

Színes pontdiagram SPSS-ben

Átlag helyett medián

Mert az átlag hamis képet festhet!

A lineáris korrelációs együttható csak a valóban lineáris korrelációt méri jól

Erre egy rövid szemléltetés; a legalsó sorban nyilvánvalóan van összefüggés a két változó között (mivel az adatpontok egyértelműen mintázatba rendeződnek); azonban mivel az összefüggés nem lineáris, a lineáris korrelációs együttható nem képes kimutatni:

Így aztán a használata előtt mindenképpen érdemes ellenőrizni, hogy a kapcsolat lineáris -e. Ahhoz, hogy lineárisnak mondhassuk, nem szükséges egyértelműen egy egyenesre rendeződniük az adatpontoknak; a képen látható, legfelső sorbeli mintázatok mind megfelelnek a feltételnek!

/forrás: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Nem a te hibád, ha nem rázod ki a kisujjadból…

…a statisztika ugyanis konkrétan egy külön szakma. Pszichológusoktól, orvosoktól, vagy neveléstudományi szakemberektől nem elvárható, hogy a statisztikához is professzionális szinten értsenek – hiszen az egy másik tudományág! Sajnos azonban a gyakorlat azt mutatja, hogy sok felsőoktatási intézményben mégis ezt az irreális elvárást támasztják a hallgatókkal szemben, ha korábban nem, a szakdolgozat statisztikai részének összeállításánál biztosan.

Ráadásul a statisztikát a legtöbb helyen nem is tanítják igazán jól, amiből az következik, hogy gyakran érthetetlen, mi is az egésznek a lényege. Például hogy miért kell hipotézisvizsgálat ahhoz, hogy eldöntsük, két átlag között van -e eltérés, mikor szemmel látható, hogy van? Szintén ki szokott maradni a képletekben használt jelölések ismertetése; pedig gyakran a képletek egy egész feladaton végigvezetnek, és segítenek abban is, hogy a számolási lépéseken helyes sorrendben haladjunk végig…

Sőt, már régóta kutatóként dolgozó szakembereknek is lehetnek fehér foltok a tudásában; hiszen egy kutatás felépítése és kivitelezése, majd az eredmények értelmezése nagyon összetett feladat, és egyáltalán nem biztos, hogy az előzetes tanulmányai során megfelelő felkészítést kapott az ilyen jellegű kihívások kezelésére az illető.

Tapasztalt statisztika magántanárként (15 éve magyarázok szinte nap- mint nap szignifikanciáról, anováról, normál-eloszlásról, korrelációkról, konfidencia-intervallumokról lelkes, és kevésbé lelkes tanítványoknak) pontosan tudom, mi az, amit a legtöbb egyetemen és főiskolán teljesíteni kell statisztikából. Azt is tudom, hogy mi az, amire már egy kutatás nulladik pillanatában érdemes figyelni, és mik azok a döntési pontok, ahol félrecsúszhat egy kutatás. És, bár én imádom a statisztikát, azzal is tisztában vagyok, hogy nem mindenki van ezzel így. Bízom benne, hogy a te, statisztikával kapcsolatos problémáidon is tudok segíteni, így ha szeretnél órára jelentkezni, vagy kérdésed van, vedd fel velem a kapcsolatot!

Több pontdiagram egyszerre SPSS-ben!

Statisztika vagy paraméter? Görög vagy latin betű?

Félsz a lebukástól? – avagy kutatás az imposztor-jelenségről

Egy kis csapat tagjaként részt veszek (én felelek a projekt statisztikai részéért) egy olyan kérdőív fejlesztésében, amely, magyar viszonylatban egyedülálló módon, képes lesz kimutatni, jellemző -e valakire az imposztor szindróma.

Ezen a linken már meg is találod a kérdőívet; a kitöltésével két dolgot is nyerhetsz: egyrészt Budapest Park utalványt 10ezer forint értékben; másrészt azt a boldog tudatot, hogy hozzájárultál a tudomány fejlődéséhez!

A kitöltéshez katt a képre; a kutatás részletesebb honlapját pedig itt találod!

A mérési szintek rejtélye

Statisztikai tanulmányaink során jellemzően olyankor kerülnek szóba a mérési szintek, amikor még nem nagyon tudjuk mihez kötni őket. Nem segíti a megértési folyamatot az sem, hogy a skálák mérési szintjei azután összemosódnak a változók típusaival; és ez nem is csoda, hiszen a gyakorlatban inkább a változókkal dolgozunk, tehát ezekkel sokkal gyakrabban találkozunk. Sőt, a skálák mérési szintjeinek elnevezéseit gyakran változókategóriákként is használjuk…Mindehhez jön még az a jelenség, miszerint a változók többféleképpen is csoportosíthatók – és így válik teljessé a káosz. Sajnos viszont legkésőbb a szakdolgozat statisztikai részének összerakásához mindenképpen tisztában kell lenni velük!

mérési szintek tulajdonképpen azt jelenítik meg, hogy egy-egy adat milyen módon alakítható matematikává. A nominális szintű adatok például sehogy; ezért is nominális, azaz névleges ennek a kategóriának a neve, mert a számok, amiket az adatokhoz rendelünk, egyáltalán semmiféle matematikai jelentéssel nem bírnak. Klasszikusan például 1-es jelöli a férfiakat, 2-es a nőket; de ezeket a számértékeket nincs értelme kivonni egymásból, sem összeszorozni, ésatöbbi. Csak címkék; ennélfogva elvben felcserélhetőek más címkékre; jelölhetné mondjuk 83 a férfiakat, és 243 a nőket, mivel ezekkel az értékekkel úgysincs értelme számolni. Ugyanígy lehetne például arról gondolkodni, hogy kinek milyen háziállata van. Lehetne 1-es a kutya, 2-es a macska, és 3-as az egyéb; de a kategóriákat számozhatnánk teljesen máshogy is; legfeljebb ahhoz lenne érdemes ragaszkodni, hogy az „egyéb” kategória, mint afféle „maradék”, legyen a legutolsó számérték.

Ezzel szemben mondjuk a településkategóriákat (főváros, megyeszékhely, város, község, egyéb) nagyon furcsa lenne nem a nagyságrendjüket lekövető számokkal jelölni. Ugyanez igaz a végzettségi szintekre. Elviekben jelölhetné 4-es az általános iskolát, mint legmagasabb végzettséget, és például 2-es a mesterképzést, 1-es pedig az érettségit; de ebben az esetben nem használnánk ki a mérendő értékek közötti természetes sorrendet. Ha tehát létezik egy ilyen természetes sorrend abban az adatban, amit számszerűsíteni akarunk, érdemes ordinális, azaz sorrendi skálát használni a mérésére. Így a kategóriák jelölésére használt számok, bár továbbra sem összeadhatóak, legalább az egymásutániságot megfelelően jelölik; további példa lehet erre a típusú adatra egy úszóversenyen résztvevők beérkezési sorrendje; vagy az egymást követő időszakok beszámozása egy idősoros elemzésnél.

A következő mérési szint az intervallumskála. Ezt olyan jellegű adatok számszerűsítésére használjuk, amelyek már rendelkeznek azzal a tulajdonsággal, hogy az általuk felvehető értékek között mindig azonos a távolság. (Szemben az előző, ordinális skálával, ahol az úszóverseny első és második helyezettének ideje között egyáltalán nem biztos, hogy ugyanakkora az eltérés, mint a második és a harmadik helyezett között; ott tehát az 1-2, és a 2-3 közötti „lépéshossz” nem azonos). Az intervallumskálán, éppen mivel már azonosak az osztásközei, az összeadás és a kivonás is értelmes eredményre vezet. Klasszikusan ezzel a mérési szinttel mér a hőmérő. Nagyon is van értelme azt mondani, hogy mivel ma 18 fok van, tegnap pedig 9 volt, ma 9 fokkal melegebb van, mint tegnap. Ugyanakkor a két érték osztással való összehasonlítása, ami arra az eredményre vezetne, hogy ma kétszer olyan meleg van, mint tegnap volt, megint csak nem értelmes fogalmilag, holott matematikailag nyilván tényleg kettőt kapunk, ha a 18-at 9-cel elosztjuk. Ha szeretnénk a szorzást és az osztást is értelmessé tenni a mérés során, akkor olyan skálát kell használnunk, aminek létezik úgynevezett abszolút nulla pontja.

Emlékszem, amikor én tanultam először a mérési szintekről, ezt az abszolút nulla dolgot egyáltalán nem értettem. Ha van egy abszolút nullánk, akkor már arányskáláról beszélünk; ami a nevében is mutatja, hogy ezen a mérési szinten már oszthatunk és szorozhatunk is. Így kell mérnünk például a testmagasságot. Mondhatjuk, hogy egy 160 cm magas ember 80 centiméterrel magasabb egy 80 cm magas gyereknél; de már azt is, hogy a 160 cm magas kétszer olyan magas, mint aki 80 cm. Tehát ami matematikailag nem működik a Celsius-skálán, az működik a testmagasságnál – és a két verzió között az abszolút nulla a különbség; ez pedig nem jelent mást, minthogy olyan skálával dolgozunk, aminél a 0, mint felvett érték lehetetlen; másképpen fogalmazva az a dolog, amihez a skálán 0 érték tartozna, az nem létezik. 0 fok, mint hőmérséklet- igen, ilyen van. 0 cm magas ember nem létezik, mint ahogy 0 kg tömegű ember sem. Abban azonban megegyezik az intervallum- és az arányskála, hogy mindkettő azonos osztásközökkel rendelkezik; a gyakorlati elemzési munka során nem is nagyon teszünk különbséget a kettő között.

2 / 3 oldal

Köszönjük WordPress & A sablon szerzője: Anders Norén