oktatás, elemzés, kutatástervezés

Kategória: Egyéb kategória 2 / 3 oldal

Logisztikus regresszió a gyakorlatban – 2.

A párkapcsolati erőszak ideologizálását jósló „képlet” kidolgozása is logisztikus regressziós modell segítségével történt:

Rövid, de hasznos – színes pontdiagram SPSS-ben

Logisztikus regresszió a gyakorlatban

Ebben a tanulmányban például arra használtuk, hogy megpróbáljuk kimutatni, milyen javakat fogyasztanak egyenlőtlenül az együtt élő, heteroszexuális párok.

Mi a lényegük a hipotézisvizsgálatoknak? 2.rész

Az előző bejegyzésben tisztáztuk, hogy a hipotézisvizsgálatokat arra használjuk, hogy egy mintából a populációra következtessünk. Ennek a folyamatnak a során tulajdonképpen azzal próbálkozunk, hogy a véletlen hatását (ami a mintavételi ingadozáson keresztül valósul meg) a valós hatástól elkülönítsük; mindezt pedig valószínűségi alapon tesszük.

Folytassuk az előző posztban szereplő példával: eltér -e vajon a férfiak testmagassága a nőkétől a populációban? Mivel nem tudunk minden egyes embert megmérni, a populáció minden tagjának adatát képtelenség megismerni; ezért kénytelenek vagyunk egy mintából való következtetéssel beérni – ebben a mintában a nők magasságának átlaga 167 cm, a férfiaké 175. És, akármennyire precízen vettük is a mintát, abban megegyezhetünk, hogy egy másik minta egy kissé más átlagokat mutatna, egy harmadik pedig ismét eltérne kissé, a véletlen hatása miatt. Ha pedig ezt elfogadjuk, akkor honnan tudhatnánk, hogy a 167 és a 175 közötti eltérés nem csak egy extrém szerencsétlen mintavétel miatt van, hanem tényleges különbséget jelez?

Itt jön képbe a valószínűség. Mivel a nullhipotézis mindig az, amit leginkább „nincs itt semmi látnivaló”-nak nevezhetnénk (vagyis a példánkban, hogy nincs eltérés az átlagok között, tehát a populációban a férfiak és a nők testmagassága megegyezik), ebből az alapfeltevésből indulunk ki. Amikor a szignifikianciaszintet 0,05-ben határozzuk meg, akkor tulajdonképpen azt mondjuk, hogy a nullhipotézisben foglalt állításhoz képest leginkább valószínűtlen, lehetséges mintákat gondoljuk túl valószínűtlennek ahhoz, hogy a nullhipotézis fennállását még komolyan tudjuk venni (a lehetséges minták legextrémebb 5%-át). Egy határ után az eltérés a két átlag között már annyira valószínűtlen, hogy szinte képtelenül szerencsétlen mintát kéne vennünk hozzá, hogy az eltérés csak a véletlen műve legyen – márpedig ha nem a véletlen műve, akkor ott HATÁST találtunk (különbséget, összefüggést).

Ha a két nem testmagassága a nullhipotézisnek megfelelően tényleg egyezik, akkor például egy 168 versus 170-es nő/férfi mintaátlag még elképzelhető, mint a mintavételi ingadozás következménye. 168 és 172 cm is, „szemmértékre”. De ha a nő minta átlaga 168, a férfié 190, akkor érzékelhetően növekszik annak a valószínűsége, hogy mégsem stimmel a nullhipotézisünk. Ha az egyik átlag 140, a másik pedig 210 lenne (persze korrekt mintavétellel), akkor már nagyon nehéz lenne azt hinnünk, hogy a populációban egyforma magasak a férfiak és a nők, csak nagyon nem volt szerencsénk a mintavétellel.

Egy másik példa: hatásos -e egy antidepresszáns? Tegyük fel, ha a gyógyszert nem szedők PHQ-9 depresszióskálán mért értéke 9, a gyógyszert szedőké pedig 10: ez olyan csekély eltérés, hogy nem állíthatjuk meggyőződéssel, hogy valóban hat a gyógyszer. Lehet, hogy a véletlen szeszélye folytán a gyógyszert nem szedők csoportjába kevésbé depressziós emberek kerültek. Ha ugyanezek az értékek a 0-27-ig terjedő skálán 9 és 14, elgondolkodhatunk; viszont ha 9 és 18, akkor elég világos, hogy az antidepresszáns hat. Hogy valóban ez -e a helyzet a populációban, azt persze nem „érzésre” döntjük el, hanem hipotézisvizsgálattal.

Összefoglalva: az összes hipotézisvizsgálat ezzel a módszertannal dolgozik – vagyis a véletlen, és a tényleges hatás szerepét igyekszik tisztázni; és ehhez a valószínűségszámítás alapvetéseit használja. A jó hír, hogy ha valaki „csak” alkalmazni szeretné ezeket a módszereket, ennél mélyebben nem is szükséges alámerülni a hipotézisvizsgálatok csodás világába. Ha mégis maradt kérdésed, vedd fel velem a kapcsolatot!

Tulajdonképpen mi a lényegük a hipotézisvizsgálatoknak? 1.rész

Tapasztalataim szerint ez az egyik leginkább misztikusnak tűnő fogalom a statisztikában – és nem csak a diákok számára. Találkoztam már olyan kutatóval is, aki, bár évtizedek óta a pályán van, mégsem érti a lényegét, pedig nem is annyira bonyolult – csak valami furcsa okból épp ez (mármint hogy mi a célunk vele, mi az értelme) szokott kimaradni a statisztika bevezető órákról. Úgyhogy akkor most tisztázzuk is!

Amit mindenképpen érdemes megérteni: a hipotézisvizsgálat mindig a POPULÁCIÓRÓL mond el valamit, a MINTA alapján. Ezért képezik a hipotézisvizsgálatok a következtető statisztika egy jelentős szeletét; a koncepció nyilván mindenkinek ismerős. Van egy sokaság, egy populáció, amit meg szeretnénk ismerni, de nincs módunk megkérdezni/megvizsgálni/lemérni ennek a populációnak minden elemét – kiválasztjuk tehát egy részét(veszünk belőle egy mintát); és ha ezt a kiválasztást sikerült elég precízen megvalósítanunk, akkor a mintából tudunk a teljes populációra következtetni. Ha pedig van egy előzetes feltevésünk a POPULÁCIÓRÓL (például hogy benne azonos a férfiak és a nők átlagmagassága), akkor ezt a feltevést a mintából való következtetéssel tudjuk ellenőrizni – vagyis hipotézisvizsgálatot végzünk.

Emlékszem, amikor én tanultam először erről, én sem értettem a dolgot. Oké, van egy női átlagunk (mondjuk 167), meg egy férfi átlagunk (mondjuk 175), ezeket könnyen kiszámolhatjuk a mintából. Akkor vajon, gondoltam én, miért teszi fel a tanár a szemmel láthatólag szerinte fontos kérdést: „És akkor nézzük meg, eltér -e a nők és a férfiak magassága?”- hát persze hogy eltér, könyörgöm, az egyik 167, a másik 175, a vak is látja, hogy eltér…Azt hiszem, a tanárok már azzal nagyban segítenék a téma megértését, ha ilyenkor kiegészítenék a mondatot, valahogy így: És akkor nézzük meg, eltér -e a nők és a férfiak magassága a POPULÁCIÓBAN (a mintából következtetve…).

Ebből persze az is kiviláglik, hogy ha nem mintavétellel dolgozunk, vagyis ha megvan minden adatunk a populáció elemeiről (mint például egy cégnél az össze munkatárs fizetése), akkor ott értelmetlen hipotézisvizsgálatokat végezni, hiszen nem kell következtetnünk semmire, csak számolnunk kell.

Illetve még egy lényeges kiegészítés: a hipotézisvizsgálatok valószínűségekkel dolgoznak, következésképp BIZTOSAT semmiről a világon nem tudnak mondani – sem pro, sem kontra.

A lényeg tehát, első körben: hipotézisvizsgálatot akkor használunk, ha egy, a populációra vonatkozó feltevésünket akarjuk egy minta alapján igazolni. Ha nincs mintavétel, nincs értelme a hipónak sem; továbbá éppen mivel ismeretlen populációs jelenségekre következtetünk, biztosat a populációról sosem tudunk állítani; nagyon valószínűt vagy valószínűtlent azonban igen.

A lényeg második része hamarosan következik, egy újabb bejegyzésben!

Rövid, de hasznos – APA formátumú táblázat, közvetlenül az SPSS-ből

Rövid, de hasznos – ANOVA futtatása és értelmezése excelben

Rövid, de hasznos – regressziós egyenes egyenletének kiíratása egyszerűen excelben

Mi a mediáció?

Az összemosó változókhoz szorosan kapcsolódó téma következik!

A mediációs elemzés hasznos lehet, amikor egy összemosó változó hatását szeretnénk igazolni; hiszen az összemosás a mediáció jellegzetes, gyakori esete. A mediátor változó olyan változó, ami kapcsolatot képez a független, és a függő változó között; valahogy így:

Egyrészt a független változó hatással van a függőre – ez természetes, ez az alapállás egy elemzésben; például az edzés mennyisége hatással van a sprintelés sebességére. Ugyanakkor a test magnézium-ellátottsága, mint mediáló változó, szintén hat a sebességre (minél kevesebb a magnézium, annál rosszabb a teljesítmény); és amitől a magnézium mediátor lesz, az nem más, minthogy az edzés elfogyasztja a szervezetből. Így tehát az edzés közvetetten (a magnéziumszint csökkentésén keresztül) IS hat a sebességre – ezért ha nem vesszük figyelembe egy elemzés során, nem fogjuk a teljes képet látni.

Egy másik példa lehet a következő hármas: matematikai képességek, és a matekszakon továbbtanulás iránti érdeklődés, mint független és függő változók – természetesnek vehetjük, hogy aki jobb matekból, azt jobban érdekli a matek-témájú továbbtanulás. És persze a harmadik változó, a példában a matekkal kapcsolatos önbizalom; ami közvetetten, a matekhoz való tehetség közvetlen hatása mellett, hat arra, vannak -e valakinek matek szakra továbbtanulási szándékai:

Az ábrán látható (a kis csillagok jelzik), hogy a közvetett és a közvetlen hatások is szignifikánsak; vagyis a matekos önbizalom általánosságban véve is (nem csak abban a mintában, amit éppen vizsgálunk) hat a továbbtanulási szándékra.

Mediációs elemzést SPSS-ben is végezhetünk, csak telepíteni kell hozzá az úgynevezett PROCESS makrót.

Összességében tehát ha túl akarunk lépni a gyakran félrevezető kétváltozós elemzéseken, érdemes a mediációs vizsgálatot is elővenni a statisztikai módszereink közül!

Összemosó változók – bár a grafikon azt mutatja, nem a gólya hozza a gyereket

Fontos statisztikai alapvetés, hogy a kétváltozós elemzések nagyon félrevezetőek lehetnek,többek között az úgynevezett összemosó változók miatt. Az összemosás a mediáció egyik típusa; mégpedig az, amikor X és Y között a kapcsolat csak látszólagos, és csak azért találjuk meg egy elemzés során, mert egy harmadik változó jár együtt mindkettővel, egyszerre. Klasszikus példa a jelenségre a ráncok és az ősz hajszálak mennyiségének kapcsolata. Minél több a ránca valakinek, annál több az ősz hajszála is? Igen. Ha korrelációt futtatnánk, szoros kapcsolatot találnánk a két változó között? Minden bizonnyal. De mégsem a sok ránc okozza az ősz hajat, és nem is az ősz hajszálak magasabb aránya a több ránco; hanem mindkettőt egy harmadik -mediátor, vagy itt specifikusabban összemosó változó- az életkor.

Itt van továbbá még a híres „gólya hozza a gyereket” sztori, tudományosan alátámasztva:

Itt az összemosó változó a falusias, vagy városias környezet; az urbanizáltság mértéke! A nagyvárosokban kevesebb a gólya, és átlagosan kevesebb gyereket vállalnak a párok. Érdemes megfigyelni, hogy a grafikon nem „hazudik”. Igaz, hogy minél több a gólya egy településen, annál magasabb a gyerekszám. Mindössze csupán két változó kapcsolatát boncolgatva ritkán látjuk a teljes képet-a világ általában komplexebb ennél.

Ezért minden, szakdolgozó tanítványomnak azt szoktam javasolni, hogy keressenek potenciális összemosó változókat egy-egy, a szakterületükön furcsának, meglepőnek számító, kétváltozós összefüggés mögött.

2 / 3 oldal

Köszönjük WordPress & A sablon szerzője: Anders Norén